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Abstract. We propose a new model of turbulence for use in large-eddy simulations (LES). The turbulent
force, represented here by the turbulent Lamb vector, is divided in two contributions. The contribution
including only subfilter fields is deterministically modeled through a classical eddy-viscosity. The other
contribution including both filtered and subfilter scales is dynamically computed as solution of a generalized
(stochastic) Langevin equation. This equation is derived using Rapid Distortion Theory (RDT) applied
to the subfilter scales. The general friction operator therefore includes both advection and stretching by
the resolved scale. The stochastic noise is derived as the sum of a contribution from the energy cascade
and a contribution from the pressure. The LES model is thus made of an equation for the resolved scales,
including the turbulent force, and a generalized Langevin equation integrated on a twice-finer grid. We
compare the full model with several approximations. In the first one, the friction operator of the Langevin
equation is simply replaced by an empirical constant, of the order of the resolved scale correlation time. In
the second approximation, the integration is replaced by a condition of instantaneous adjustment to the
stochastic force. In this approximation, our model becomes equivalent to the velocity-estimation model of
Domaradzki et al. [1–3]. In the isotropic, homogeneous situations we study, both approximations provide
satisfactory results, at a reduced computational cost. The model is finally validated by comparison to DNS
and is tested against classical LES models for isotropic homogeneous turbulence, based on eddy viscosity.
We show that even in this situation, where no walls are present, our inclusion of backscatter through the
Langevin equation results in a better description of the flow.

PACS. 47.27.Eq Turbulence simulation and modeling – 47.27.-i Turbulent flows – 47.11.+j Computational
methods in fluid dynamics

1 Introduction

The rationale for Large Eddy Simulation is often rooted in
our inability to handle all the degrees of freedom of a large
Reynolds number turbulent flow. Given that the smaller
scales monopolize most of the computing resources, it is
tempting to cut through the number of degrees of freedom
via an ad hoc small-scale decimation. The price to pay is
of course a need for parameterization (the so-called Sub-
Grid Scale models, or SGS), to make up for the energy
transfer of the ghost scales. We refer the reader to [4–7]
for recent reviews about modern parameterization strate-
gies in LES. We may loosely divide the SGS models in
two classes, according to their philosophy: the “determin-
istic” models based on eddy-viscosities, and the “stochas-
tic” models, based on synthetic fields. In eddy-viscosity
methods, the action of small scales is parameterized via a
few deterministic numbers, linked with the various com-
ponents of the subgrid-scale stress tensor. These models
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seek to reproduce the intensification of energy transport
due to the action of scales widely separated from the con-
sidered one. However, they fail to reproduce backward en-
ergy transfer (backscatter) from small to large scale, cre-
ated by elongated triads in the spectral space [8]. This
effect has been shown to induce a stochastic character in
the LES [9]. In ideal situations, where the turbulence is
isotropic, homogeneous and far from wall, this backscatter
is usually viewed as secondary, and eddy-viscosity based
models are generally satisfactory. However, in more re-
alistic situations, including turbulence near walls or in
boundary layers, the energy backscatter has proven to
be an essential feature [10,11]. Some models like mixed
models based on similarity hypothesis are able to repro-
duce a realistic backscatter in some situations [12,13].
The need for backscatter modeling also leads to the de-
velopment of “stochastic” strategies, where the discarded
small-scale motions are replaced by a set of random num-
bers, mimicking either a random force or synthetic ve-
locity fields [1,14,15]. In many ways, these strategies
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resemble the strategies used to describe the dynamics of a
heavy particle coupled to a thermal bath involving many
degrees of freedom (the so-called Brownian motion). The
decimation is here performed by substituting in place of
the bath a deterministic friction and a stochastic force, the
two terms being linked through the dissipation theorem.
The initial problem is then completely described through
the so-called Langevin equation.

Turbulence is typically an out-of-equilibrium system,
and there is probably no hope that such a simple descrip-
tion will ever be possible (would it be only because no
fluctuation-dissipation theorem prevails in turbulence!).
However, we would like to use this analogy to motivate
a new strategy for LES modeling: replace the actual dy-
namics of the decimated degrees of freedom by a suit-
able noise, via a Langevin equation. Although this strat-
egy may seem close to recent models based on synthetic
fields, we would like to point out an important philosoph-
ical difference: rather than trying to estimate the actual
small-scale dynamics, we aim at trying to estimate a plau-
sible small-scale dynamics. We believe there is no unique
solution for this last option. In the sequel, we present one
solution based upon Rapid Distortion Theory [15]. There
may exist actually more efficient models, based e.g. upon
information theory [16].

To be more specific, consider a turbulent flow, with ve-
locity field ui(x, t) and introduce a filtering procedure so
as to separate it into a resolved field Ui = ui and a subfil-
ter field u′

i = ui−Ui. The resolved field obeys a dynamical
equation obtained by filtering of the Navier-Stokes equa-
tion, which may conveniently be written as [17]:

∂tU + (U · ∇)U + l + (u′ · ∇)u′ = −∇P + ν∆U,

l = (U · ∇)u′ + (u′ · ∇)U. (1)

Here, P is the resolved pressure and ν is the viscosity and
l is a turbulent force. In idealistic situations including a
spectral gap between resolved and subfilter scale, the vec-
tor l is zero, and one can rigorously show that the contri-
bution of the remaining term is of “diffusive” type (provid-
ing certain symmetries which exclude first order behavior
such as the AKA effect [18]). Even as one departs from
this idealistic situation, experimental [19] and numerical
study [20] show that this term correlates strongly to the
resolved velocity gradient, thereby allowing a determin-
istic treatment through an eddy-viscosity of appropriate
shape. In the same time, the force vector l becomes in-
creasingly non-negligible (it can even become dominant
in 2D situations see [15]). It is responsible for backscatter
type of behaviour and needs to be modeled through novel
“non-diffusive” and “non-deterministic” strategies. In the
sequel, we will therefore focus onto the modeling of the l
term, via a generalized Langevin equation ∂tl = Al + ξ
where A is a generalized evolution operator, and ξ is a
noise.

However, a clear difficulty associated with this strategy
is the lack of theoretical guide (equivalent of the statisti-
cal mechanics in Brownian motion) to help us devising
the “best” friction, and the “best” stochastic force. For
the time being, we then choose to pin down our model as

best as possible to the real dynamics of Navier-Stokes by
trying to derive it from the original dynamical equations,
rather than from pure empirical or dimensional consider-
ations. For this, we reformulate the RDT-Langevin model
of Laval et al. [15] in a way suitable for LES. There are
of course limitations to this approach, pertaining the need
for both a simple enough model, and for tractable analyt-
ical computations. We try to formulate them as honestly
as possible by pointing out the approximation we make at
the various stage of the derivation of the model. This is
done in Section 2. The LES-Langevin model is then im-
plemented in the case of periodic three-dimensional tur-
bulence and comparison with other existing LES models is
provided in Section 3. Our conclusions follow in Section 4.

2 The LES-Langevin model of turbulence

2.1 Derivation of the Langevin equation

Our derivation is based on the stochastic RDT model de-
veloped by Laval et al. [15,21,22]. This model is based on
the observation that subfilter-scales are mostly slaved to
resolved scales via linear processes akin to rapid distor-
tion. This property is substantiated by various numerical
simulations, and is linked with the prominence of non-local
interactions at subfilter-scale [15]. Using incompressibility,
the small-scale dynamics in this model can be written as:

∂tu′ = −l′ −∇p′ + ∇(ν + νt)∇u′ − f . (2)

Here, p′ is the subfilter pressure, νt is a turbulent viscos-
ity describing the non-linear interactions between subfilter
scales and f is a forcing stemming from the energy cas-
cade. The latter can be shown to be dominated by resolved
scales non-linearities through fi = ∂j

(
UiUj − UiUj

)
. Fi-

nally, we may use the observation that subfilter scales vary
over fast time scale with respect to resolved scales to write:

∂tl ≈ (U · ∇)∂tu′ + (∂tu′ · ∇)U,

≈ −{(U · ∇)(l′ + f)) + [(l′ + f) · ∇]U}
− {(U · ∇)∇p′ + [(∇p′) · ∇]U}
+visc, (3)

where visc gathers all the term containing ν or νt. This
equation is only an approximation, in so far as the assump-
tion of “rapidly varying scales” becomes less and less valid
as the resolved scales and subfilter velocities are becom-
ing closer and closer in scale space. However, it seems to
capture the dominant physics of the evolution of the vec-
tor l, as will be later shown. Further, it is tempting to
simplify the viscous terms of the second equation of (3)
to try and get a closed equation for l. Indeed, these terms
involve an a priori rather arbitrary turbulent viscosity and
one could redefine it so that the viscous terms are simply
lumped into a term ∇(ν +νt)∇l. Finally, we note that the
terms involving the subfilter pressure depend on bound-
ary conditions and on subfilter velocities, so that they can
be thought to vary over a fast time scale, contrarily to
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the f term which varies over a slow time scale. We there-
fore choose to collect all the term involving the pressure
and f into a noise term, ξ0 + ξ, such that ξ is a Gaussian-
centered noise and:

ξ0 = −(U · ∇)f − (f · ∇)U,

〈ξ〉 = 0, 〈ξi(t, x)ξj(t′, x′)〉 = Tij (t − t′, x − x′), (4)

where Tij is the noise correlation function, to be specified.
Note that since ξ comes from a pressure contribution, it
only affects the non-soleinodal part of the turbulent force.
In the sequel, since we work with periodic boundary con-
ditions, we can apply a simple projection procedure to
work only with soleinodal fields, thereby discarding the ξ
term. We therefore leave the study of the influence of this
term for future work, involving more realistic boundary
conditions such as flow near walls.

Collecting all the results, we therefore obtain the fol-
lowing RDT based-model for the turbulent force l as:

∂tl = −(U · ∇)l′ − (l′ · ∇)U + ∇(ν + νt)∇l + ξ0 + ξ. (5)

It takes the form of a generalized Langevin equation, with
friction made of viscosity and rapid distortion by resolved
scales, and with stochastic forcing, with mean value gener-
ated through the energy cascade, and whose correlations
are physically imposed by boundary conditions via pres-
sure terms.

Before implementing this Langevin equation into a
LES model, we first validate it through dynamical a priori
tests and seek optimal performances by tuning of νt. Our
LES-Langevin model will follow after this validation step.

2.2 Dynamical a priori testing

2.2.1 The numerical procedure

The numerical simulations described in the present paper
have been performed with a spectral code over a cubic
domain. This choice is mainly motivated by its perfor-
mances in terms of accuracy and its versatility regard-
ing any variant of our model. The aliasing is removed by
keeping only the 2/3 largest modes in each direction. The
time integration is performed with a second order Adams
Bashforth scheme. The simulations with both the RDT
and the LES-Langevin models are performed with a sharp
cut-off filter at k = kc. The filter may not be optimum in
terms of efficiency, but it has the interesting properties
to clearly separate scales and to commute with derivative
operators. The influence of the filter would need to be con-
ducted for a complete validation. The validation tests are
performed on decaying and forced isotropic homogeneous
turbulence. The simulation of decaying turbulence is ini-
tialized with a Gaussian velocity field with a given energy
spectra E(k, to) ∝ k4 exp(−k2/8). For the forced simula-
tion, the forcing F is defined by F(k, t) dt = γ(k, t)u(k, t),
with γ chosen so that the difference of the energy spectra
before and after the forcing (i.e. the energy injection rate
�) is constant in time (� = 1.). The forcing is concen-
trated at the lowest wavenumbers k such as 0 < k < 1.

Fig. 1. Energy spectra of the RDT models (5) and the equiv-
alent DNS at t = 2 of simulations of decaying turbulence (the
RDT simulation is initialized with the velocity field of the DNS
at t = 1).

The initial time of the forced simulation is chosen so
that statistical properties are stabilized. The simulations
are integrated over approximately 6.3 turnover time in
the decaying case and 4 turnover time (after stabiliza-
tion) in the forced case. A constant molecular viscosity
of ν = 0.0014 is used for all simulations. The resulting
Taylor Reynolds number is approximately constant and
equal to Rλ = 200 for the forced DNS and varies from
Rλ = 260 to Rλ = 26 in the decaying case. Both DNS
are performed with 3413 effective wavenumbers after de-
saliasing (5123 grid points). The space resolution allows
a computation of scales down to 0.5 and 0.8 Kolmogorov
scale for the decaying and the forced DNS respectively.
The simulation with LES-Langevin model are performed
with kc = 21 (423 effective wavenumbers are used for the
resolved scales).

2.2.2 Validation of the model

The validation of the model is conducted by dynamical
tests performed with the DNS of decaying 3D turbulence.
It is performed by comparing a full DNS and a simulation
at the same resolution, in which the turbulent force l is
replaced by the solution of (5). This way, we may explore
the validity of the approximations we made in its deriva-
tion. We focus here on the energy spectra, so as to capture
possible deficiency of our model regarding energy trans-
fer between scales. The test is performed for 1 < t < 2
(all the simulations are initialized with the same field at
t = 1). By that time, the kinetic energy is divided by
a factor of approximately 2. The energy spectra at time
t = 2 are shown in Figure 1. The model (RDT) and the
DNS agree at the largest scales (k < 3) but they signifi-
cantly differ for smaller scales (the bump at k = 21 is due
to the coupling between the equation for resolved scales
and the equation for subfilter scales running in parallel).
This can be explained through the analysis of the evolu-
tion of l (Fig. 2). One sees that the RDT model leads to a
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Fig. 2. Comparison at two different times of the spectral den-
sity of l2 modeled by the integration of l (Eq. (5)) and the
same quantity directly computed from the resolved and sub-
grid scales (l = (U · ∇)u′ + (u′ · ∇)U).

constant increase of the smallest modes of l in time. After
a given period of time, the contribution of these unrealis-
tic resolved scales of l influence the model of the velocity
field resolved scales.

An explanation of this feature can be found following a
recent study of the RDT model (2) [22] showing that the
process of small-scale stretching by random large scales
is akin to a dynamo process, with exponential increase
of the small-scale energy. A way to stabilize the system
is to include a friction term in the RDT equation, lead-
ing to a stationary energy spectrum with index depending
on the friction time τf . A Kolmogorov k−5/3 spectrum is
obtained for τf = 27/22 Ω, where Ω = 〈(SijSij )

−1/2〉 is
a typical stretching rate based on spatial average of the
large-scale velocity stress tensor Sij . Using equation (3),
one sees that such a friction term generates an equiva-
lent friction term in the equation for the Lamb vector.
This remark motivates the introduction of a stabilizing
friction term −l/τf in the equation for l to try and stabi-
lize the coupled system. Indeed one observes a significant
improvement with respect to the original RDT model. We
therefore adopt this procedure as our starting RDT model,
from which we now build our Langevin-LES model.

2.3 Derivation of the model

The derivation of the LES-Langevin model of turbulence
proceeds in two steps. In the first one, we replace the
term (u′ · ∇)u′ into a turbulent viscous term µt∆U, act-
ing only at large scales, in the spirit of standard deter-
ministic ”eddy-viscosity” models. In a second step, we de-
rive a suitable Langevin equation of the turbulent force l
through a decimation of the number of degrees of free-
dom corresponding to scales beyond the aliasing limit.
For this, we introduce a strong hyperviscosity to damp
all components beyond a given cut-off wavenumber km.
There is a priori complete freedom for the choice of km.
Here, we note that the cascade-driven forcing f has com-
ponents only up to k = 2kc. Therefore, any component of l

beyond 3kc will only be generated through secondary pro-
cesses (stretching) rather than through the forcing. We
may then hope that any km between 2kc and 3kc pro-
vides the dominant contribution to the stochastic term l.
We found that km = 2kc is in fact sufficient to capture
this dominant contribution. Our Langevin-LES (LRDT)
model is therefore finally given by:

∂tU+(U · ∇)U+l = −∇P +∇(ν + µt)∇U; [0 < k < kc]
∂tl = −(l/τf) − (U · ∇)l′ − (l′ · ∇)U

+∇(ν + νt)∇l + ξ0 + ξ; [0 < k < 2kc] (6)
ξ0 = −(U · ∇)f − (f · ∇)U,

〈ξ〉 = 0, 〈ξi(t, x)ξj(t′, x′)〉 = Tij (t − t′, x − x′),

where τf = 27/22〈(SijSij )
1/2〉, νt and µt will be specified

later and fi = ∂j

(
UiUj − UiUj

)
. Looking at equation (6),

one recognizes a LES model where the backscatter coming
from resolved scales-subfilter scales interactions is param-
eterized through a noise. The latter obeys a generalized
Langevin equation, with friction made of viscosity and
rapid distortion by resolved scales, and with stochastic
forcing ξ0 + ξ, generated through the energy cascade and
pressure processes.

2.4 Approximations

The RDT-based model we described is fully dynamics,
and a priori adapted to any type of geometry, with pos-
sible anisotropies. In certain very simple cases, however,
this model may support additional approximations, en-
abling a reduction in the computation cost. We present
two examples below.

2.4.1 Quasi-linear approximation (LQL)

In the spirit of quasi-linear approximation, we may lump
the transport and stretching by resolved scales with the
viscous and friction term and simply replace them by a
total friction term −l/τ , where τ is a typical time scale to
be chosen later.

Note that this simplification somehow relies on the hy-
pothesis that the advection and stretching of l by the re-
solved scales proceeds in an isotropic manner. We there-
fore do not expect this simple procedure to be fully valid
in cases with e.g. stratification, or rotation, or walls. In
the present case, it appears to give very good results, pro-
vided the time scale is chosen appropriately. This model
therefore looks like:

∂tU+(U · ∇)U+l = −∇P +∇(ν + µt)∇U; [0 < k < kc]
∂tl = −(l/τ) + ξ0 + ξ; [0 < k < 2kc]. (7)

2.4.2 The over-damped approximation (LQLOD)

In situation where the time scale τ is very small, the damp-
ing in the Langevin equation is very large, and there is



J.-P. Laval and B. Dubrulle: A LES-Langevin model for turbulence 475

almost instantaneous adjustment of l to the forcing. This
situation typically arises in locations where the resolved
gradients are very large, i.e.; at the border of coherent re-
solved eddies. It is therefore interesting to run the model
in this over-damped limit, to see whether these kinds of
event dominate the overall dynamics. The resulting model
(Langevin Quasi-Linear Over-Damped) looks like:

∂tU+(U · ∇)U+l = −∇P +∇(ν + µt)∇U; [0 < k < kc]
l = τ (ξ0 + ξ) ; [0 < k < 2kc]. (8)

Through this approximation, our model, based on the es-
timation of l, becomes equivalent to the ADM velocity-
estimation model of Domaradzki and collaborators [1–3].
In a recent improvement of this model, the estimated small
scales are used to integrate the Navier-Stokes equation on
the fine grid over a given period of time short enough to
prevent the pile up of the energy at the finest scales. The
ADM model can therefore be viewed as a special case of
our Langevin model. In the following, we show that this
approximation perform very well and is indistinguishable
from the general model in the isotropic homogeneous case.
However, it may not be the case in more general situations,
such as near walls. We leave this for future work.

2.5 Parameters

Our model includes three parameters Tij , τ and µt, that
we now discuss. As previously discussed, the stochastic
correlation Tij comes from pressure contribution, and we
found its influence be irrelevant in the case with periodic
boundary condition. In the present study, we therefore
adopt Tij = 0, leaving its study for cases involving walls.
For the time scale, we set τ = τf +α (SijSij )

−1/2, so as to
allow spatial variation of the friction time scale in agree-
ment with local stretching. Alternatively, one may also use
a global friction time by considering only spatial average
of the local stretching rate, so that τ = τm = βτf . This
last prescription is actually better in term of computa-
tional cost. Empirically, we found that both prescriptions
lead to a good model. In our numerical tests, we chose
α = 1 or β = 1/2 but we checked that the results are not
very sensitive to these parameters

For the turbulent viscosity, we have an a priori rather
vast choice, ranging from spectral to Smagorinsky models.
In the present case, where our numerical scheme uses fast
Fourier transform, the optimal choice (in term of compu-
tational cost) is the spectral model. The simplest choice
is to link the turbulent viscosity to the kinetic energy at
the cut-off wavenumber kc (µt ∝ √

E(kc)/kc). The pro-
portionality factor is tuned in our model and our numer-
ical tests. Since part of the dissipation is produced by l,
the proportionality constant turns out to be reduced from
0.267 for the original spectral model (see [23]) to 0.08 in
our case. Summarizing, we get the following parameters

Fig. 3. Energy spectra of the LRDT model (dash lines) and the
equivalent DNS (continuous lines) of a decaying homogeneous
isotropic turbulence. The spectra are compared for 4 different
times: t = (1, 3, 6, 9).

for our models:

Tij = 0 (9)

τ = (27/22)〈(SijSij )
−1/2〉 + (SijSij )

−1/2 (10)

τm = 0.5〈(SijSij )
−1/2〉 (11)

µt = 0.08 (E(kc)/kc)
1/2

. (12)

Models using the second prescription for the time scale
will be called Langevin Quasi Linear Averaged (LQLA).
They are optimal in term of computational cost.

3 Model performances

3.1 Comparison of the Langevin models

As a preliminary assessment of the interest of our model,
we choose to test it in a simple configuration where we
have both the code and the competence to implement it
over a short time scale. This case corresponds to homoge-
neous, isotropic turbulence with periodic boundary con-
ditions. It is clearly a restricted problem, where backscat-
ter has proved to be secondary, and where eddy-viscosity
based approaches perform very satisfactorily. In some
sense, this ideal case is therefore a challenge to our model,
for it is not clear whether there is room for further im-
provement with respect to eddy-viscosity description. In
the following, we demonstrate a slight but discernible pos-
itive effect of our strategy.

The test is done both on decaying turbulence and
forced turbulence in order to check the model ability to
accurately reproduce the energy cascade from resolved
to unresolved scales. The first comparison between the
LRDT model (Eq. (6)) and the DNS is conducted over
the energy spectra in Figure 3 and the decay of the
total kinetic energy in Figure 4. In this comparison, the
resolved scale turbulent viscosity µt is tuned to give the
best result in terms of energy spectra and decay of kinetic
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Fig. 4. Comparison of the decay of kinetic energy between
the DNS of decaying turbulence, the LRDT model (with kc =
21, km = 2kc) and the Smagorinsky model with kc = 42. The
time t = 10 correspond to a non-dimensional time of 6.3.

Fig. 5. Energy spectra of the LQL model (dash lines) and the
equivalent DNS (continuous lines) of a decaying homogeneous
isotropic turbulence. The spectra are compared for 4 different
times: t = (1, 3, 6, 9).

energy. The decimation of the small-scale of l (so as to
keep only 2kc modes in each direction) is done through an
hyper-viscosity (νt = 0.002 k2

√
E(kc)/kc) super-seeding

the turbulent viscosity of the original RDT model. The
energy spectra are in good agreement with the DNS for
t < 1 and slightly differ for the smallest resolved scales at
later time. We are confident that a more elaborate tuning
of the viscosity and friction term could have improved the
model over later time, but such accuracy was not needed
in the sequel.

The same numerical tests have been performed for the
approximate models, LQL and LQLOD, (Figs. 5 and 6),
with the same definition of the time scale τ (Eqs. (10,
11)). The results are slightly less accurate than the original
LRDT model, but the two approximated models represent
a good compromise between accuracy and CPU cost. As
discussed in the previous section, an alternative model to
LQL can also be formulate using an averaged value τm of

Fig. 6. Energy spectra of the LQLOD model (dash lines) and
the equivalent DNS (continuous lines) of a decaying homoge-
neous isotropic turbulence. The spectra are compared for 4 dif-
ferent times: t = (1, 3, 6, 9).

Fig. 7. Averaged energy spectra for the simulation of forced
isotropic homogeneous turbulence. The spectra are averaged
over 4 turnover times for the DNS and 40 turnover times for
the three LES. The DNS was performed with 3843 Fourier
modes.

the time scale τ . A comparison of averaged energy spectra
between LQL and LQLA models and DNS is done Figure 7
for a simulation of forced homogeneous isotropic turbu-
lence. In the simulation with LQLA model, the averaged
value of the time scale τm is of the order of 0.1 turnover
time. The two LES simulations are very similar and are
both in good agreement with the DNS.

3.2 Energy transfer

One of the ability of the model compared to eddy viscosity
model is to allow energy transfer from subfilter scales to
resolved scales through the model of the cross stress tensor
by the Langevin equation of l. The amount of backscatter
can be quantify by:

Tres,sub(k) =
∫ ∫

U(p)l⊥(q)δ(k − p − q)d3pd3q (13)

where l⊥ is the soleinodal part of l.
The integration of Tres,sub(k) over a shell leads to

the energy transfer as a function of the k. This quan-
tity was investigated for the LQLA model in the case of
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Fig. 8. Comparison of the energy tranfer between the DNS and
the LQLA model for forced isotropic turbulence. The energy
tranfer is split into the 3 components involving resolved and
subgrid scales. TLQLA

res,sub is the energy transfer from the Lamb

vector (see Eq. (13)) and TLQLA
sub,sub is the disipation introduced

by the turbulent viscosity µt.

Fig. 9. Comparison of the energy spectra of our LQLA model
with the DNS, the Smagorinsky model and the spectral model
(averaged over 4 turnover times for DNS and 40 turnover times
for the 3 models)

forced isotropic turbulence (see Fig. 8). The intensity of
the energy transfer through the Lamb vector T LQLA

res,sub(k)
is compared with the energy transfer from resolved scales
T LQLA
res,res(k) and the energy dissipation introduced by the

model of the Reynolds stress tensor with a turbulent vis-
cosity T LQLA

sub,sub(k). Each component of the energy transfer
is also compared with the equivalent component computed
from the DNS. The statistics have been conducted over 4
turnover times after stabilization of the statistics. The cor-
responding average energy spectra of the two simulations
are shown in Figure 9. Since the two solutions used for the
statistics differ in time, it is difficult to compare exactly
the transfer between the model and the DNS. However one
can compare the sign and the order of magnitude of each
component. The transfer coming from the Lamb vector ex-
hibits a small amount of backscatter, which is not present
in the DNS. However the transfer is very comparable at

Fig. 10. Energy spectra of the LQLA model (dash lines) and
the equivalent DNS (continuous lines) of a decaying homoge-
neous isotropic turbulence. The spectra are compared for 4
different times: t = (1, 3, 6, 9).

higher wavenumbers. The turbulent viscosity µt used to
model the Reynolds stress tensor leads to a dissipation of
energy higher than the equivalent energy transfer from the
DNS. The model of this term could probably be improved.

3.3 Comparison with other LES models

Within the present framework (isotropic, homogeneous
turbulence) it therefore seems that the LQLA model repre-
sents the best compromise in terms of accuracy and CPU
cost. We now explore its performances with respect to
other classical LES models in this field.

The simpler LES models for homogeneous, isotropic
turbulence are based on eddy-viscosity concept, namely
the Smagorinsky model [24] and the spectral model [23].
The later has only been tested for forced isotropic tur-
bulence. The former corresponds to a Smagorinsky model
(without dynamical procedure) in which the constant was
tuned to get the best results in terms of energy decay. It
was run on the finest grid of our model (the grid used for
the integration of l). The comparison is done using sev-
eral statistical diagnostic, tracing different properties of
the model.

3.3.1 Energy spectra

A comparison of the energy spectra for these two mod-
els and our LQLA model is shown in Figure 10 for the
decaying case and in Figure 9 for the forced case. In the
decaying case, our Langevin model performed at least as
well as the Smagorinsky model in terms of energy decay.
In the forced case, the Smagorinsky model clearly over-
estimate the energy dissipation at the smallest resolved
scales, resulting in an energy spectrum much steeper than
the theoretical −5/3 slopes. Similar result is found for the
spectral model, while the LQLA model compares much
better with the DNS at all scales. Indeed, our model seems
to model properly the energy transfer at the largest scales
and the energy dissipation near the cut-off.
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Table 1. Skewness and flatness of the resolved scales of the
LQLA model, the spectral model, the Smagorinsky model and
the corresponding DNS in the case of forced turbulence.

model skewness flatness

DNS –0.003314 0.3141
LQLA –0.011198 0.3107
Spectral –0.004328 0.3094
Smagorinsky 0.013744 0.3078

Fig. 11. Comparison of the normalized PDF of longitudinal
velocity increments (δvr = v(x + r) − v(x) with |r| = L

64

and r × v = 0) for our LQLA model, the Smagorinsky model,
the spectral model and the DNS. The PDF are averaged over
4 turnover times for DNS and 40 turnover times for the LES
models.

3.3.2 Skewness and flatness

We also compared the skewness and the flatness of the
LES models to the same statistics for the corresponding
scales of the DNS in the case of forced turbulence. The
results are displayed in Table 1. The LQLA model gives
a correct sign of the skewness, with a value three times
too large, and a correct estimate of the flatness. By com-
parison, the Smagorinsky model predicts a wrong sign for
the skewness and underestimates slightly the flatness. The
spectral model gives the best estimate of the skewness
(with correct sign) and underestimates the flatness of the
distribution.

3.3.3 Probability distribution function

A more refined statistical comparison can be performed
using the Probability Density Function of the velocity in-
crement δvr = (v(x + r) + v(x)) (Figs. 11 and 12). Be-
cause of the coarse resolution of the LES simulations and
the small number of statistics for the equivalent scales of
DNS, the differences of PDFs between the models and the
DNS are difficult to observe. However, the statistics with
the LQLA model seems to be in a closer agreement with
the DNS for both longitudinal and transverse velocity in-
crement than the two other dissipative models.

Fig. 12. Comparison of the normalized PDF of transverse
velocity increments (δvr = v(x + r) − v(x) with |r| = L

64

and r · v = 0) for our LQLA model, the Smagorinsky model,
the spectral model and the DNS. The PDF are averaged over
4 turnover times for DNS and 40 turnover times for the LES
models.

3.3.4 Statistics of invariants

A different statistical test can also be performed on the
tensor of velocity gradient tensor Aij = ∂ui/∂xj. We
choose to focus on the two following invariants:

Q = −1
2
AimAmi (14)

R = −1
3
AimAmkAki , (15)

which have been used to discriminate between different
turbulent models [25]. For this, we normalize the two in-
variants with a time scale based on the strain-rate tensor.
The two invariants become:

Q∗ =
Q

〈sij sij 〉 (16)

R∗ =
R

〈sij sij 〉3/2
(17)

where sij = Sij − 〈Sij 〉 and 〈·〉 is a sample averaging.
The Figure 13 shows the joint PDF of Q∗ and R∗ for
the resolved scale of the LQLA model, the Smagorinsky
model, the spectral model, and the DNS. One sees that
the LQA model and the spectral model reproduce better
the joint PDF than the Smagorinsky model, which tends
to squeeze the level lines towards R = 0, a feature already
noted in [25].

3.3.5 Strain statistics

Another important characteristic of the strain rate tensor
S is the statistics of its eigenvalues. To quantify it, Lund
and Rogers [26] proposed the following parameter:

s∗ = −3
√

6
αβγ

(α2β2γ2)3/2
(18)
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Fig. 13. Comparison of the joint PDF of R∗ and Q∗ (Eqs. (17)) for the resolved scales of the LQLA model (upper right), the
Smagorinsky model (lower right), the spectral model (lower left) and the corresponding DNS (upper left) in the case of forced
turbulence.

where α, β and γ are the eigenvalues of S such as α <
β < γ. The term s∗ measure the shape of the deformation
caused by the strain rate tensor, with s∗ = −1, 0, 1 corre-
sponding respectively to worms, shear and pancakes. The
probability density function of s∗ for the resolved scales of
the LQLA model as well as for the Smagorinsky and the
spectral models are computed in the case of forced turbu-
lence. The comparison is shown in Figure 14. The com-
parison shows very good agreement for both the LQLA
model and the spectral model with respect to the DNS,
while the Smagorinsky model shows poorer agreement.

3.3.6 Computational cost

The performance of each model can also be analyzed with
respect to its computational cost. However, we are not
able to give precise estimations of the performance because
the implementation of each model was not optimized in
terms of CPU cost. Moreover, the cost is highly related
to the type of discretization and the numerical scheme.
But, looking at the equations, we can expect an optimal
computational cost for our model to be of the order of
a DNS on a grid corresponding to the grid used for the
integration of l. It as been shown that an integration with

Fig. 14. Comparison of the PDF of s∗ (Eq. (18)) for the re-
solved scales of the LQLA model, the Smagorinsky model and
the spectral model and the corresponding DNS in the case of
forced turbulence.

wavenumbers up to 2kc is enough for the equation of l.
With the over-damped version of the model, there is no
integration for l and we could expect a gain of a factor
2 relative to the time step.
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4 Discussion

In this work, we present a new strategy to model sub-
filter scale in a Large-Eddy-Simulation. Our philosophy
derives from the Brownian motion, where the extra de-
grees of freedom are modeled through the combination of
a deterministic friction and stochastic forcing. Our model
therefore includes both a deterministic eddy-viscosity and
a stochastic turbulent force, solution of a generalized
Langevin equation. Through this combination, we aim at
reproducing both the transport enhancement through tur-
bulent motions, and stochastic energy backscatter from
subfilter to resolved scale. Several model have been pro-
posed in the past, to reproduce these two effects. At this
point, it is interesting to review briefly the most popular
ones, so as to understand their limitations and differences
with respect to our model. A first example is the similar-
ity model, which does not assume the alignment of the
turbulent stress tensor with the strain rate tensor. In the
original model of Bardina [27], the model of the Reynolds
stress is achieved through approximation of the unfiltered
velocity by the filtered velocity. This model can be seen as
the zero-level of more general deconvolution models that
rebuilds the unfiltered velocity (see [28] for a discussion
on de-filtering in LES). This procedure however is also
subject to serious limitations, since a LES with an exact
deconvolution of the velocity field would lead to a simula-
tion of the Navier-Stokes equation on a coarse grid without
any model but with a sharp filter. Practically, the result-
ing lack of dissipation is provided through the physical or
the numerical approximations of the deconvolution [29].
Other concepts arose from a detailed analysis of the en-
ergy transfer between resolved and subfilter scales. This
leads to the conclusion that the scales smaller than half the
smallest resolved scales have only few impact on the direct
energy transfer to the largest scales [30–32]. Following this
observation, a new method to capture the backscatter has
been proposed through direct estimation or a more ac-
curate integration of the largest subfilter-scales velocities.
The simulations with these models can be accurate but ex-
pensive LES or cheap approximated DNS. The dynamics
multilevel model [33–35] is an example of cheap DNS as
it requires the same resolution as the corresponding DNS.
Our 2D version of the RDT model [21] using a Lagrangian
evolution of small-scale wave-packets is more flexible since
the accuracy of the model is function of the number of
modes used for the subfilter scales. Better performances
in terms of computational cost can be obtained in mod-
els where only the largest unresolved scales are estimated.
An example is provided by the ADM model of Domaradzki
[1–3], where subfilter scales are estimated on a finer grid.
The estimation of subfilter scales is performed after a first
step of deconvolution. In a recent improvement of this
model the estimated small scales are used to integrate the
Navier Stokes equation on the fine grid over a given period
of time short enough to prevent the pile up of the energy
at the finest scales. Finally, one may note that attempt of
direct inclusion of the backscatter have been done in the
past through empirical addition of random numbers, with
well chosen spectrum [9,36]. These models led to notice-

able improvement with respect to eddy-viscosity type of
approach for boundary layer or plane shear mixing layer.

Most of these models have been validated and com-
pared in several flow configurations. The most intensive
comparison have been performed for isotropic turbulence
where the DNS can reach higher Reynolds number. For
instance, Fureby et al. [37] made a comparative study
of subgrid scale model of eddy-viscosity type, models of
similarity type and Miles model. For moderate Reynolds
number, they concluded that the difference between LES
with different models are small but not insignificant. The
characteristics of more specific type of models like eddy-
viscosity models or similarity models have been studied
intensively by many authors [13,38,39]

From this review, it is clear that our originality is to
seek for a systematic derivation of the stochastic effect,
rooted in the Navier-Stokes dynamics. By this mean, we
hope both to avoid uncontrolled, empirical modeling, and
respect of all the symmetries of the original Navier-Stokes
equation (a constraint not always easy to respect, see [40]).
Our model may also easily be generalized to other more
complicated systems, like e.g. rotating, stratified or inho-
mogeneous turbulence. Specifically, we separate the sub-
filter scale contribution into a term that correlates well
to resolved strain tensors, and a term susceptible to the
backscatter. The first term is modeled through a tradi-
tional eddy-viscosity, while the second is modeled through
a noise, obeying a generalized Langevin equation. This
equation is not postulated, but derived from the Navier-
Stokes equation, through hypothesis akin to rapid distor-
tion theory. The stochastic retro-action couples the re-
solved scales and the noise through the energy cascade,
ensuring strong non-linearity of our model and non-trivial
equilibrium solutions. A corner stone of our model is the
estimation of l, rather than the velocity, like in ADM
model. Apart from this difference, there is some similar-
ity between our model and the ADM model, in the sim-
plest approximations we considered (quasi-linear and over-
damped approximation). However, our model derives from
the original Navier-Stokes equation through a well-defined
and systematic procedure.

We have proposed a preliminary test of our model in
isotropic, homogeneous situation, with periodic boundary
conditions. In this case where the backscatter is secondary,
we have shown that our model still perform slightly bet-
ter than traditional LES approach used in this situation,
based on eddy-viscosity concept. It would now be inter-
esting to test our model in more realistic situations, with
boundaries, where the stochastic modeling will become an
essential ingredient. Given that our model reduces to the
ADM model in a well-defined limit, we are confident that
it can perform as well as this last model. The interest-
ing question is whether our dynamical procedure increases
its performance, and overcome certain limitations of the
ADM model. This will be the subject of a future work.
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en Informatique de Haute Normandie, France). We thank the
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